Dephosphonylation of β-Keto Phosphonates with LiAlH₄

Jong Eoun Hong, Won Suk Shin, Won Bum Jang, and Dong Young Oh*

Department of Chemistry, Korea Advanced Institute of Science and Technology, 373-1, Kusong-Dong, Yusong-gu, Taejon, 305-701, Korea

Received September 26, 1995 (Revised Manuscript Received December 8, 1995)

Introduction

 β -Keto phosphonates¹ involve a phosphonate group as a regiocontrol element for the alkylation, such as β -keto esters² and β -keto sulfones³ which are useful synthetic intermediates containing a temporary activating group for preparation of regioselective α -alkylated ketones by α -alkylation with subsequent defunctionalization. In contrast to the significant number of applications of β -keto esters and β -keto sulfones in this manner, the method using β -keto phosphonates has not been studied yet, due to the fact that dephosphonylation⁴ of β -keto phosphonate is less known.

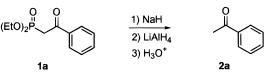
Although various methods or reagents^{5,6} have been used to reduce a $C-P^{V}$ bond into a C-H bond, the known chemical methods for $C-P^{V}$ cleavage are of limited generality due to the unique substrate requirements. Moreover, there is only one literature⁷ reference involving about the C-P bond reduction of β -keto-1-phosphonato esters analogous to β -keto phosphonates. Recently, Denmark⁸ pointed out that there was no general method for cleavage of the C-P bond in β -keto phosphonate.

Herein we report a new utility of β -keto phosphonates as building blocks for synthesis of α -alkylated ketones *via* dephosphonylation.

Results and Discussion

We first observed the dephosphonylation of β -keto phosphonate **1a** when the reaction of β -keto phosphonate

(3) (a) Kinoshita, H.; Hori, I.; Oishi, T.; Ban, Y. *Chem. Lett.* **1984**, 1517. (b) Kurth, M. J.; O'brien, M. J. *J. Org. Chem.* **1985**, *50*, 3846. (c) Fujii, M.; Nakamura, K.; Mekata, H.; Oka, S.; Ohno, A. *Bull. Chem. Soc. Jpn.* **1988**, *61*, 495.


(5) (a) Bestmann, H. J.; Schultz, H. Chem. Ber. 1962, 95, 2921. (b)
Okamoto, Y.; Iwamoto, N.; Takamuku, S. J. Chem. Soc., Chem. Commun 1986, 1516. (c) Bestmann, H. J.; Graf, G.; Kolewa, S.;
Vilsmeier, E. Chem. Ber. 1970, 103, 2794. (d) Kondo, K.; Negishi, A.;
Tunemoto, D. Angew. Chem., Int. Ed. Engl. 1974, 13, 407.

(6) Recently we reported that enamine phosphonates bearing α -stabilized groups such as phenyl or thiophenyl gave the corresponding deoxybenzoin or β -keto sulfides during basic hydrolysis. Oh, D. Y.; Lee, K. Bull. Kor. Chem. Soc. **1991**, *12*, 254.

(7) In this case, it was reported as a notable result that during attempted reductions of 2-oxo-1-phosphonato ester to corresponding 2-hydroxy-1-phosphonato ester with various reductants, Li(*t*-BuO)₃AlH among them cleaved selectively C–P bond to give the corresponding β -keto ester. However, its mechanism and applications have not been reported. Durrant, G.; Sutherland, J. K. *J. Chem. Soc., Perkin Trans. 1* **1972**. 2582.

(8) Denmark, S. E.; Marlin, J. E.; J. Org. Chem. 1991, 56, 1003

Scheme 1

sodium enolate with $LiAlH_4$ in THF afforded the corresponding ketone **2a** in high yield as shown in Scheme 1.⁹

This observation prompted us to elaborate a general procedure for the preparation of regioselective α -alkylated ketones by the dephosphonylation of the substituted β -keto phosphonates which can be prepared by commonly used methods such as acylation of alkylphosphonate anions⁹ and α - or γ -alkylation of β -keto phosphonates.^{10,11} The dephosphonylation reaction is rather general as indicated in the Table 1.

 β -Aryl- β -keto phosphonates **1a-d** were completely converted into the corresponding ketones without byproducts (2a-d). On the other hand, in the case of 1-monosubstituted- β -alkyl- β -keto phosphonates **1e-g** the reaction gave the corresponding ketones in high yields (2e-g) along with a small amount of the corresponding alcohols resulting from further reduction. Although complete consumption of the starting materials was observed on reaction of β -alkyl- β -keto phosphonates bearing no substituent at the α -carbon (**1h**-**j**), the reaction produced the desired ketones 2h-j in lower yields than in the former cases and side products which could not be identified. Although the use of LiAlH₄ in this process was successful, further attempts to find mild and effective reductants for compatibility of a variety of functional groups failed under the same conditions as shown in Table 1 (LiBEt₃H, DIBAL-H, Li(t-BuO)₃AlH).

To gain insight about the reaction mechanism, we carried out some experiments using β -keto phosphonates as shown in Scheme 2.

When β -keto phosphonate **1a** was treated with NaBH₄ in ethanol, β -keto phosphonate **1a** was smoothly converted to the corresponding β -hydroxy phosphonate **3**. In the case of LiAlH₄ in THF, the reaction afforded the complicated mixture **4**. On the other hand, the reaction of β -keto phosphonate **5** involving no α -proton with LiAlH₄ gave cleanly the corresponding β -hydroxy phosphonate **6** without dephosphonylated product.

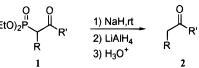
The results of these experiments suggested that dephosphonylation could occur *via* formation of the metal enolate of β -keto phosphonate, and that the complicated mixture **4** might be caused by the action of LiAlH₄ as a base as well as a reductant.

In order to investigate further the dephosphonylation reaction, we carried out the following reactions. When reduction of sodium enolate of β -keto phosphonate **1c** with LiAlD₄ was followed by quenching with dilute H₂-SO₄, the reaction afforded the ketone **2c** containing no deuterium. In the case of using LiAlH₄ and deuterated acid, the reaction gave the ketone **2c**'¹³ containing two deuteriums as shown in Scheme 3.

⁽¹⁾ Wadsworth, W. S.; Emmons, W. D. *J. Am. Chem. Soc.* **1961**, *83*, 1733. Horner, L.; Hoffmann, H.; Wippell, H. G.; Klahre, G. *Chem. Ber.* **1959**, *92*, 2499. Horner, L.; Hoffmann, H.; Klink, W.; Ertel, H.; Toscano, V. G. *Chem. Ber.* **1962**, *95*, 581. Wadworth, W. S. *Org. React. (N.Y.)* **1977**, *25*, 73.

⁽²⁾ Krapcho, A. P. Synthesis 1982, 893.

⁽⁴⁾ To distinguish between "dephosphorylation" and "dephosphonylation", we use the term "dephosphonylation" as a limited meaning of P-C bond cleavage in compound containing phosphonate groups.


^{(9) (}a) Honda, M.; Katsuki, T.; Yamaguchi, M. *Tetrahedron Lett.* **1984**, *25*, 3857. (b) Mikolajczyk, M.; Balczewski, P. *Synthesis* **1984**, 691.

⁽¹⁰⁾ Clark, R. D.; Kozar, L. G.; Heathcock, C. H. Synthesis 1975, 635.

⁽¹¹⁾ Grieco, P. A.; Pogonowski, C. S. Synthesis 1973, 425.

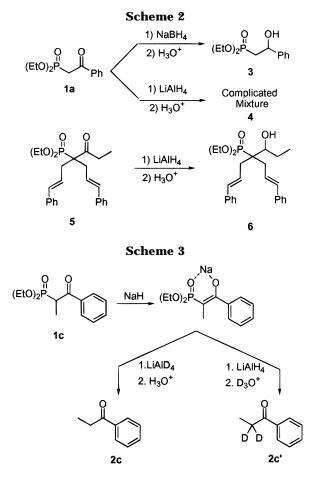

⁽¹²⁾ *n*-BuLi was used instead of NaH as a base because the reaction with NaH failed to form the enolate of **1j**.

Table 1. Dephosphonylation of Substituted β -Keto Phosphonates^a

		1	2		
entry (substrate)	R	R'	time, h	products	yield, ^{<i>b,c</i>} %
1 (1a)	Н	Ph	<0.2	2a	98
2 (1b)	Н	4-Cl-Ph	< 0.2	2b	97
3 (1c)	Me	Ph	< 0.2	2c	96
4 (1d)	allyl	4-Cl-Ph	< 0.2	2d	97
5 (1e)	Ph	Me	0.5	2e	89
6 (1f)	CH ₂ Ph	Et	0.5	2f	91
7 (1g)	cinnamyl	Et	0.5	2g	87
8 (1h)	Н	CH ₂ CH ₂ Ph	1	2h	57
9 (1i)	Н	CH(CH ₃)CH ₂ CH=CHPh	1	2i	72
$10 (1j^{12})^d$	Н	C(CH ₃) ₂ CH2CH=CHPh	1	2j	65

^{*a*} All reactions run in THF and quenched with 10 N sulfuric acid. ^{*b*} Yield of isolated, purified products. ^{*c*} Solvent was evaporated below 0 °C. ^{*d*} *n*-BuLi used instead of NaH.

These results suggest that during the cleavage of the P-C bond, the hydride does not attack the carbon atom linked with phosphorus atom, and that after cleavage of the P-C bond, the intermediate might have dianion character.

(13) Analysis of ¹H NMR and ¹³C NMR spectra indicated dideuterated ketone as the major product along with a small amount of monodeuterated ketone (*ca.* mono:di = 1:9). To investigate the possibility of H–D exchange reaction between D_3O^+ and ketone, the following procedure was carried out.

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} 5N \text{ CH}_3\text{COOD} \\ \hline \\ Ph \end{array} & \begin{array}{c} \frac{7D_2\text{O}}{\text{r.t.}} \\ 30 \text{ min} \end{array} \end{array}$$
 no exchange reaction observed

No deuterized ketone was observed. See supporting information.

In conclusion, we have described the first general example of dephosphonylation of β -keto phosphonates with respect to its simplicity and efficiency. Also these results suggest that the use of β -keto phosphonates as precursors to α -alkylated ketones would complement existing methods used to synthesize alkylated ketones which use β -keto esters and β -keto sulfones.

Further studies on the mechanism and dephosphonylation of other β -carbonyl phosphonates are in progress.

Experimental Section

General Methods. All reactions were conducted under an atmosphere of nitrogen in oven-dried glassware with magnetic stirring. THF was distilled from Na/benzophenone ketyl. ¹H-NMR spectra were recorded at 200 or 300 MHz in CDCl₃ using TMS or residual CHCl₃ as internal references. Starting materials **1a**-**1i** were synthesized as described in the literature with minor modification.¹⁰⁻¹²

General Procedure for Dephosphonylation of β -Keto **Phosphonate 1a.** A solution of β -keto phosphonate **1a** (0.256) g, 1 mmol) in anhydrous THF was added via syringe to a stirred suspension of NaH and rinsed with hexane (0.027 g, 1.1 mmol) in anhydrous THF at room temperature. After being stirred for 1 h, the resulting enolate was transferred into a stirred solution of LiAlH₄ (0.114 g, 3 mmol) in THF at room temperature and stirred for 10 min. The mixture is quenched by transferring it to aqueous 10 N sulfuric acid (10 mL). The solution was extracted with diethyl ether (30 mL x 2). The organic phase was washed with 5% aqueous $NaHCO_3$ and water and then dried over anhydrous MgSO₄; the drying agent was filtered off, and the filtrate was evaporated under reduced pressure at below 0 °C. The residue was purified by flash chromatography with ethyl acetate/hexane (10/90) as eluent to give acetophenone (2a, 0.118 g, 98%). ¹H NMR (200 MHz,CDCl₃) δ 7.97-7.91 (m, 2H), 7.56–7.39 (m, 3H), 2.58 (s, 3H); $^{13}\mathrm{C}$ NMR (50 MHz, CDCl₃) δ 197.9, 136.9, 132.9, 121.3, 128.1, 26.3.

4-Chloroacetophenone 2b: obtained as a colorless liquid (0.150 g, 97%) from β-keto phosphonate **1b** (0.291 g, 1 mmol). Reduction time; 10 min. Purification by flash chromatography (ethyl acetate/hexane 10/90). ¹H NMR (200 MHz, CDCl₃) δ 7.93–7.84 (m, 2H), 7.46–7.39 (m, 2H), 2.58 (s, 3H); ¹³C NMR (50 MHz, CDCl₃) δ 196.6, 139.3, 135.2, 129,5 128.7, 26.3.

Propiophenone 2c: obtained as a colorless liquid (0.129 g, 96%) from *β*-keto phosphonate **1c** (0.291 g, 1 mmol). Reduction time; 10 min. Purification by flash chromatography (ethyl acetate/hexane 10/90). ¹H NMR (200 MHz ,CDCl₃) δ 8.00–7.92 (m, 2H), 7.59–7.38 (m, 3H), 2.99 (q, J = 7.3 Hz, 2H), 1.22 (t, J = 7.2 Hz, 3H); ¹³C NMR (50 MHz, CDCl₃) δ 206.6, 136.7, 132.6, 128.3, 127.7, 31.5, 8.0.

1-(4-Chlorophenyl)-4-penten-1-one (2d): obtained as a colorless liquid (0.189 g, 97%) from β -keto phosphonate **1d** (0.331 g, 1 mmol). Reduction time; 10 min. Purification by flash

chromatography (ethyl acetate/hexane 10/90). ¹H NMR (200 MHz, CDCl₃) δ 7.89 (d, J = 8.4 Hz, 2H), 7.42 (d, J = 8.4 Hz, 2H), 5.97–5.81 (m, 1H), 5.13–4.98 (m, 2H), 3.04 (t, J = 7.3 Hz, 2H), 2.53–2.43 (m, 2H); ¹³C NMR (50 MHz, CDCl₃) δ 198.0 139.2, 136.9, 135.1, 129.3, 128.7, 128.4, 127.9, 115.3, 37.5, 29.5, 27.9; EIMS m/e 194 (M⁺, 2.1), 141 (41), 139 (100), 113 (10), 111 (24), 75 (7).

1-Phenyl-2-propanone (2e): obtained as a colorless liquid (0.132 g, 89%) from β-keto phosphonate **1e** (0.284 g, 1 mmol). Reduction time; 30 min. Purification by flash chromatography (ethyl acetate/hexane 10/90). ¹H NMR (300 MHz, CDCl₃) δ 7.31–7.17 (m, 5H), 3.66 (s, 2H), 2.10 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 205.9, 134.0, 129.0, 128.3, 126.6, 50.5, 28.6; EIMS m/e 134 (M⁺, 7), 121 (4), 111 (5), 107 (6), 106 (10), 105 (100), 91 (8), 77 (22), 43 (5).

1-Phenyl-3-pentanone (2f): obtained as a colorless liquid (0.147 g, 91%) from β-keto phosphonate **1f** (0.298 g, 1 mmol). Reduction time; 40 min. Purification by flash chromatography (ethyl acetate/hexane 10/90). ¹H NMR (200 MHz, CDCl₃) δ 7.23–7.12 (m, 5H), 2.91–2.82 (m, 2H), 2.72–2.63 (m, 2H) 2.35 (q, J = 7.3 Hz, 2H), 1.01 (t, J = 7.3 Hz, 3H); ¹³C NMR (50 MHz, CDCl₃) δ 210.1, 140.9, 128.1, 128.0, 125.7, 43.5, 35.7, 29.5, 7.4; EIMS m/e 162(M⁺, 59), 141 (12), 139 (25), 133 (45), 106 (10), 105 (100), 91 (60), 79 (10), 77 (16).

1-Phenyl-1-hepten-5-one (2g): obtained as a colorless liquid (0.164 g, 87%) from β-keto phosphonate **1g** (0.324 g, 1 mmol). Reduction time; 35 min. Purification by flash chromatography (ethyl acetate/hexane 10/90). ¹H NMR (200 MHz,CDCl₃) δ 7.34–7.17 (m, 5H), 6.39 (d, J = 15.9 Hz, 1H), 6.17 (dt, J = 15.8, 6.3 Hz 1H), 2.60–2.37 (m, 6H), 1.05 (t, J = 7.3 Hz, 3H); ¹³C NMR (50 MHz, CDCl₃) δ 210.5, 137.3, 130.5, 128.9, 128.3, 126.9, 125.8, 41.7, 35.9, 27.0, 7.6; EIMS m/e 188 (M⁺, 69), 159 (30), 131 (57), 130 (14), 129 (39), 128 (26), 117 (100), 104 (21), 91 (72), 57 (21).

1-Phenyl-3-butanone (2h): obtained as a colorless liquid (0.084 g, 57%) from β-keto phosphonate **1h** (0.284 g, 1 mmol). Reduction time; 1 h. Purification by flash chromatography (ethyl acetate/hexane 10/90). ¹H NMR (200 MHz, CDCl₃) δ 7.30–7.17 (m, 5H), 2.93–2.69 (m, 4H), 2.11 (s, 3H);¹³C NMR (50 MHz, CDCl₃) δ 207.7, 140.9, 128.4, 128.1, 126.0, 45.0, 29.9, 29.6; EIMS m/e 148 (M⁺, 100), 133 (22), 115 (11), 105 (88), 91 (58), 77 (18), 65 (6), 51 (5).

5-Methyl-1-phenyl-1-hexen-5-one (2i): obtained as a colorless liquid (0.136 g, 72%) from β -keto phosphonate **1I** (0.324 g, 1 mmol). Reduction time; 1 h. Purification by flash chromatography (ethyl acetate/hexane 10/90). ¹H NMR (200 MHz, CDCl₃) δ 7.34–7.17 (m, 5H), 6.39 (d, J= 15.8 Hz, 1H), 6.09 (dt, J= 15.7, 7.0 Hz, 1H), 2.68–2.45 (m, 2H), 2.29–215 (m, 1H), 2.12 (s, 3H), 1.11 (d, J= 6.8, 3H); ¹³C NMR (50 MHz, CDCl₃) δ 211.5, 137.1, 131.8, 128.3, 127.1, 127.0, 125.8, 46.8, 35.9, 28.2, 15.8; EIMS *m/e* 188 (M⁺, 26), 173 (6), 145 (28), 129 (17), 117 (100), 104 (22), 97 (17), 91 (46), 43 (9).

5,5-Dimethyl-1-phenyl-1-hexen-5-one (2j): obtained as a colorless liquid (0.132 g, 72%) from β-keto phosphonate **1j** (0.338 g, 1 mmol). *n*-BuLi (0.7 mL, 1.6 N solution, 1.1 mmol) was used to form enolate instead of NaH. Reduction time; 1 h. Purification by flash chromatography (ethyl acetate/hexane 10/90). ¹H NMR (200 MHz, CDCl₃) δ 7.34–7.14 (m, 5H), 6.38 (d, 1H), 6.06 (dt, 1H), 2.39 (dd, J = 7.4, 1 Hz, 2H), 2.14 (s, 3H), 1.15 (s, 6H); ¹³C NMR (50 MHz, CDCl₃) δ 213.3, 137.2, 133.0, 128.4, 127.1, 126.1, 125.7, 48.1, 43.0, 25.3, 24.2.; EIMS *m*/*e* 202 (M⁺, 9), 188 (5), 117 (100), 105 (6), 91(21), 77(3).

Reduction with LiAlD₄ in Scheme 3. According to the general procedure described above, the corresponding enolate of β -keto phosphonate 1c (1 mmol) was transferred into a stirred solution of LiAlD₄ (0.126 g, 3 mmol) in THF at room temperature and stirred for 10 min. Normal workup was followed. The resulting ketone is identical with 2c (0.124 g, 92%).

Quenching with Deuterated Acid in Scheme 3. According to general procedure described above, the corresponding enolate of β -keto phosphonate **1c** (1 mmol) was transferred into a stirred solution of LiAlH₄ (0.114 g, 3 mmol) in THF at room temperature and stirred for 10 min. The mixture is quenched by transferring it to 30% AcOD in D₂O (20 mL). Normal workup gave α, α - d_2 -Propiophenone **2c**' (0.095 g, *ca.* mono:di = 1:9, 70%). ¹H NMR (200 MHz, CDCl₃) δ 7.97–7.93 (m, 2H), 7.54–7.44 (m, 3H), 1.20 (br s, 3H); ¹³C NMR (50 MHz, CDCl₃) δ 200.8, 136.8, 132.7, 128.4, 127.8, 30.9 (quintet, $J_{C-D} = 19.0$ Hz).

Acknowledgment. This research was supported by Korea Science and Engineering Foundation (KOSEF).

Supporting Information Available: ¹H NMR and ¹³C NMR spectra for compounds in Table 1 and Scheme 3 (21 pages). This material is contained in libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.

JO951757P